Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Am Heart Assoc ; 13(6): e031283, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456416

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is the leading cause of heart failure with a poor prognosis. Recent studies suggest that endothelial to mesenchymal transition (EndMT) may be involved in the pathogenesis and cardiac remodeling during DCM development. EDIL3 (epidermal growth factor-like repeats and discoidin I-like domains 3) is an extracellular matrix glycoprotein that has been reported to promote EndMT in various diseases. However, the roles of EDIL3 in DCM still remain unclear. METHODS AND RESULTS: A mouse model of DCM and human umbilical vein endothelial cells were used to explore the roles and mechanisms of EDIL3 in DCM. The results indicated that EndMT and EDIL3 were activated in DCM mice. EDIL3 deficiency attenuated cardiac dysfunction and remodeling in DCM mice. EDIL3 knockdown alleviated EndMT by inhibiting USP10 (ubiquitin specific peptidase 10) dependent Smad4 deubiquitination in vivo and in vitro. Recombinant human EDIL3 promoted EndMT via reinforcing deubiquitination of Smad4 in human umbilical vein endothelial cells treated with IL-1ß (interleukin 1ß) and TGF-ß (transforming growth factor beta). Inhibiting USP10 abolished EndMT exacerbated by EDIL3. In addition, recombinant EDIL3 also aggravates doxorubicin-induced EndMT by promoting Smad4 deubiquitination in HUVECs. CONCLUSIONS: Taken together, these results indicate that EDIL3 deficiency attenuated EndMT by inhibiting USP10 dependent Smad4 deubiquitination in DCM mice.


Assuntos
Cardiomiopatia Dilatada , Animais , Humanos , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Moléculas de Adesão Celular/metabolismo , Discoidinas , Fator de Crescimento Epidérmico , Transição Epitelial-Mesenquimal , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina Tiolesterase , Proteases Específicas de Ubiquitina/metabolismo
2.
MedComm (2020) ; 5(3): e491, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463394

RESUMO

Hypertensive vascular remodeling is defined as the changes in vascular function and structure induced by persistent hypertension. Maresin-1 (MaR1), one of metabolites from Omega-3 fatty acids, has been reported to promote inflammation resolution in several inflammatory diseases. This study aims to investigate the effect of MaR1 on hypertensive vascular remodeling. Here, we found serum MaR1 levels were reduced in hypertensive patients and was negatively correlated with systolic blood pressure (SBP). The treatment of MaR1 reduced the elevation of blood pressure and alleviated vascular remodeling in the angiotensin II (AngII)-infused mouse model. In addition, MaR1-treated vascular smooth muscle cells (VSMCs) exhibited reduced excessive proliferation, migration, and phenotype switching, as well as impaired pyroptosis. However, the knockout of the receptor of MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was seen to aggravate pathological vascular remodeling, which could not be reversed by additional MaR1 treatment. The mechanisms by which MaR1 regulates vascular remodeling through LGR6 involves the Ca2+/calmodulin-dependent protein kinase II/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Overall, supplementing MaR1 may be a novel therapeutic strategy for the prevention and treatment of hypertension.

3.
Cardiovasc Diabetol ; 23(1): 77, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378551

RESUMO

BACKGROUND: The atherogenic index of plasma (AIP) has been demonstrated to be significantly associated with the incidence of prediabetes and diabetes. This study aimed to investigate the association between the AIP and undiagnosed diabetes in acute coronary syndrome (ACS) patients. METHODS: Among 113,650 ACS patients treated with coronary angiography at 240 hospitals in the Improving Care for Cardiovascular Disease in China-ACS Project from 2014 to 2019, 11,221 patients with available clinical and surgical information were included. We analyzed these patients' clinical characteristics after stratification according to AIP tertiles, body mass index (BMI) and low-density lipoprotein cholesterol (LDL-C) levels. RESULTS: The AIP was independently associated with a greater incidence of undiagnosed diabetes. The undiagnosed diabetes was significantly greater in the T3 group than in the T1 group after adjustment for confounders [T3 OR 1.533 (1.199-1.959) p < 0.001]. This relationship was consistent within normal weight patients and patients with an LDL-C level ≥ 1.8 mmol/L. In overweight and obese patients, the AIP was significantly associated with the incidence of undiagnosed diabetes as a continuous variable after adjustment for age, sex, and BMI but not as a categorical variable. The area under the receiver operating characteristic curve (AUC) of the AIP score, triglyceride (TG) concentration, and HDL-C concentration was 0.601 (0.581-0.622; p < 0.001), 0.624 (0.603-0.645; p < 0.001), and 0.493 (0.472-0.514; p = 0.524), respectively. A nonlinear association was found between the AIP and the incidence of undiagnosed diabetes in ACS patients (p for nonlinearity < 0.001), and this trend remained consistent between males and females. The AIP may be a negative biomarker associated with undiagnosed diabetes ranging from 0.176 to 0.738. CONCLUSION: The AIP was significantly associated with the incidence of undiagnosed diabetes in ACS patients, especially in those with normal weight or an LDL-C level ≥ 1.8 mmol/L. A nonlinear relationship was found between the AIP and the incidence of undiagnosed diabetes, and this trend was consistent between male and female patients. The AIP may be a negative biomarker associated with undiagnosed diabetes and ranges from 0.176 to 0.738.


Assuntos
Síndrome Coronariana Aguda , Aterosclerose , Diabetes Mellitus , Humanos , Masculino , Feminino , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/epidemiologia , LDL-Colesterol , Índice de Massa Corporal , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Triglicerídeos , Biomarcadores , HDL-Colesterol , Fatores de Risco
4.
FASEB J ; 38(5): e23513, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38421300

RESUMO

Targeting cardiac remodeling is regarded as a key therapeutic strategy for heart failure. Kielin/chordin-like protein (KCP) is a secretory protein with 18 cysteine-rich domains and associated with kidney and liver fibrosis. However, the relationship between KCP and cardiac remodeling remains unclear. Here, we aimed to investigate the role of KCP in cardiac remodeling induced by pressure overload and explore its potential mechanisms. Left ventricular (LV) KCP expression was measured with real-time quantitative PCR, western blotting, and immunofluorescence staining in pressure overload-induced cardiac remodeling in mice. Cardiac function and remodeling were evaluated in wide-type (WT) mice and KCP knockout (KO) mice by echocardiography, which were further confirmed by histological analysis with hematoxylin and eosin and Masson staining. RNA sequence was performed with LV tissue from WT and KO mice to identify differentially expressed genes and related signaling pathways. Primary cardiac fibroblasts (CFs) were used to validate the regulatory role and potential mechanisms of KCP during fibrosis. KCP was down-regulated in the progression of cardiac remodeling induced by pressure overload, and was mainly expressed in fibroblasts. KCP deficiency significantly aggravated pressure overload-induced cardiac dysfunction and remodeling. RNA sequence revealed that the role of KCP deficiency in cardiac remodeling was associated with cell division, cell cycle, and P53 signaling pathway, while cyclin B1 (CCNB1) was the most significantly up-regulated gene. Further investigation in vivo and in vitro suggested that KCP deficiency promoted the proliferation of CFs via P53/P21/CCNB1 pathway. Taken together, these results suggested that KCP deficiency aggravates cardiac dysfunction and remodeling induced by pressure overload via P53/P21/CCNB1 signaling in mice.


Assuntos
Glicoproteínas , Insuficiência Cardíaca , Peptídeos e Proteínas de Sinalização Intercelular , Deficiência de Proteína , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Ciclina B1 , Remodelação Ventricular , Transdução de Sinais
5.
J Hypertens ; 42(3): 420-431, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937508

RESUMO

The proliferation, migration and phenotypic transformation of vascular smooth muscle cells contribute to vascular remodeling and hypertension. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been shown to have anti-inflammatory effects and can protect against different cardiovascular diseases. However, the role and mechanism of RvD1 in hypertension are not clear. The current study investigated the role of RvD1 in Ang II-induced hypertensive mice and Ang II-stimulated rat vascular smooth muscle cells. The results showed that RvD1 treatment significantly attenuated hypertension and vascular remodeling, as indicated by decreases in blood pressure, aortic media thickness and collagen deposition. In addition, RvD1 inhibited the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in vivo and in vitro . Notably, the protective effects of RvD1 were mediated by the Ras homolog gene family member A (RhoA)/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, our findings demonstrated the potential benefits of RvD1 as a promising therapeutic agent in the treatment of vascular remodeling and hypertension.


Assuntos
Ácidos Docosa-Hexaenoicos , Hipertensão , Proteínas Quinases Ativadas por Mitógeno , Camundongos , Ratos , Animais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Músculo Liso Vascular/metabolismo , Remodelação Vascular/fisiologia , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Proliferação de Células , Angiotensina II/farmacologia , Miócitos de Músculo Liso , Células Cultivadas
6.
J Inflamm Res ; 16: 5971-5987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088942

RESUMO

The coronary reperfusion following acute myocardial infarction can paradoxically trigger myocardial ischemia-reperfusion (IR) injury. This complex phenomenon involves the intricate interplay of different subsets of macrophages. These macrophages are crucial players in the post-infarction inflammatory response and subsequent myocardial anti-inflammatory repair. However, their diverse functions can lead to both beneficial and detrimental effects. On one hand, these macrophages play a crucial role in orchestrating the inflammatory response, aiding in the clearance of cellular debris and initiating tissue repair mechanisms. On the other hand, their excessive infiltration and activation can contribute to the perpetuation of the inflammatory cascade, leading to additional myocardial injury and adverse cardiac remodeling. Multiple mechanisms contribute to the IR injury mediated by macrophages, including oxidative stress, apoptosis, and autophagy. These processes further exacerbate the damage to the already vulnerable myocardial tissue. To address this delicate balance, therapeutic strategies aiming to target and modulate macrophage polarization and function are being explored. By fine-tuning the immune inflammatory response, such interventions hold promise in mitigating post-infarction myocardial injury and fostering a more favorable environment for myocardial healing and recovery. Through advancements in this area of research, potential anti-inflammatory interventions may pave the way for improved clinical outcomes and better management of patients after acute myocardial infarction.

7.
Front Pharmacol ; 14: 1295463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094889

RESUMO

SGLT-2 inhibitors, such as empagliflozin, have been shown to reduce the occurrence of cardiovascular events and delay the progression of atherosclerosis. However, its role in atherosclerotic calcification remains unclear. In this research, ApoE-/- mice were fed with western diet and empagliflozin was added to the drinking water for 24 weeks. Empagliflozin treatment significantly alleviated arterial calcification assessed by alizarin red and von kossa staining in aortic roots and reduced the lipid levels, while had little effect on body weight and blood glucose levels in ApoE-/- mice. In vitro studies, empagliflozin significantly inhibits calcification of primary vascular smooth muscle cells (VSMCs) and aortic rings induced by osteogenic media (OM) or inorganic phosphorus (Pi). RNA sequencing of VSMCs cultured in OM with or without empagliflozin showed that empagliflozin negatively regulated the osteogenic differentiation of VSMCs. And further studies confirmed that empagliflozin significantly inhibited osteogenic differentiation of VSMCs via qRT-PCR. Our study demonstrates that empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of VSMCs, which addressed a critical need for the discovery of a drug-based therapeutic approach in the treatment of atherosclerotic calcification.

8.
Eur J Radiol Open ; 11: 100532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38028187

RESUMO

Background: The etiology of aortic stenosis (AS) significantly impacts transcatheter heart valve (THV) implantation, with rheumatic etiology posing challenges. The concept of valve anchoring during transcatheter aortic valve replacement (TAVR) for patients with aortic regurgitation (AR) remains unclear. Objective: This study aims to investigate the clinical and CT anatomical characteristics of various aortic valve diseases. Methods: A retrospective analysis was conducted on consecutive patients who underwent CT for severe aortic diseases between April 2019 and February 2023. CT analysis was performed in eight anatomical landmarks: left ventricular outflow tract (LVOT), aortic annulus, sinus of Valsalva (SOV), sinotubular junction (STJ), ascending aorta (AAO), coronary height, aortic angle, and aortic valve calcification volume. Results: 121 patients with severe aortic valve disease were included, divided into AS (71 cases, 59%) and AR (50 cases, 41%) groups. In patients with AR, the absolute diameters of the annulus, LVOT, SOV, STJ, and AAO, as well as the heights of SOV and STJ and the cardiac angle, are larger than those in patients with AS (all P < 0.05). In normalized aortic root dimensions, the AR group had a higher SOV and STJ diameter-to-annulus ratio than the AS group (STJ-SOV-annulus: 1.51-1.44-1.00 vs 1.33-1.28-1.00). The bicuspid and rheumatic AS groups had smaller sinuses (STJ-SOV-annulus:1.27-1.35-1.00, 1.17-1.30-1.00, respectively), necessitating the downsizing of the THV. For 74% of AR patients, the sinotubular junction could not be used as a second anchoring zone, and anchoring relied primarily on the annulus. Conclusions: Patients with rheumatic etiology require smaller valves, and anchoring in AR patients depends on the valve annulus. These structural characteristics will influence TAVR selection.

9.
Drug Des Devel Ther ; 17: 3073-3083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849783

RESUMO

Background: Increased inflammation contributes to pressure overload-induced myocardial remodeling. 17(R)-Resolvin D1 (17(R)-RvD1), a potent lipid mediator derived from docosahexaenoic acid, possesses anti-inflammatory and pro-resolving properties. However, the association between 17(R)-RvD1 and pressure overload-induced cardiac hypertrophy remains unclear. Methods: Transverse aortic constriction (TAC) surgery was performed to establish a cardiac hypertrophy model. C57BL/6J mice were randomly assigned to the Sham, TAC and TAC+17(R)-RvD1 groups. 17(R)-RvD1 was injected (2 µg/kg, i.p.) before TAC surgery and once every other day after surgery for 4 weeks. The same volume of saline was injected into the mice in both Sham group and TAC group. Then, cardiac function was evaluated and heart tissues were collected for biological analysis. Results: 17(R)-RvD1 treatment attenuated TAC-induced increase in left ventricular diameter and decrease in left ventricular contractility, mitigated increased cardiomyocyte cross-sectional area, and downregulated the expression of hypertrophic genes. Besides, 17(R)-RvD1 attenuated myocardial fibrosis, as indicated by the decreased LV collagen volume and expression of fibrotic genes. In addition, 17(R)-RvD1 ameliorated the inflammatory response in cardiac tissue, as illustrated by the decreased infiltration of CD68+ macrophages and reduced production of pro-inflammatory cytokines, including TNF-α, IL-1ß, and IL-6. 17(R)-RvD1 treatment significantly suppressed the activation of NLRP3 inflammasome after TAC surgery, which might be responsible for the attenuation of inflammation in cardiac tissue. Conclusion: 17(R)-RvD1 attenuated pressure overload-induced cardiac hypertrophy and fibrosis, and the possible mechanism may be associated with the inhibition of NLRP3 inflammasome. 17(R)-RvD1 may serve as a potential drug for the treatment of cardiac hypertrophy.


Assuntos
Ácidos Docosa-Hexaenoicos , Inflamassomos , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Anti-Inflamatórios/uso terapêutico , Miócitos Cardíacos , Fibrose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Remodelação Ventricular
10.
Hypertension ; 80(12): 2650-2664, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37800344

RESUMO

BACKGROUND: Inflammation plays a critical role in the development of hypertension and vascular remodeling. Resolvin E1 (RvE1), as one of the specialized proresolving lipid mediators, promotes inflammation resolution by binding with a G protein-coupled receptor, ChemR23 (chemerin receptor 23). However, whether RvE1/ChemR23 regulates hypertension and vascular remodeling is unknown. METHODS: Hypertension in mice was induced by Ang II (angiotensin II) infusion (750 ng/kg per minute), and RvE1 (2 µg/kg per day) was administered through intraperitoneal injection. Loss of ChemR23 was achieved by mice receiving intravenous injection of adeno-associated virus 9-encoding shRNA against ChemR23. RESULTS: Aortic ChemR23 expression was increased in Ang II-induced hypertensive mice and that ChemR23 was mainly expressed on vascular smooth muscle cells (VSMCs). RvE1 lowered blood pressure, reduced aortic media thickness, attenuated aortic fibrosis, and mitigated VSMC phenotypic transformation and proliferation in hypertensive mice, which were all reversed by the knockdown of ChemR23. Moreover, RvE1 reduced the aortic infiltration of macrophages and T cells, which was also reversed by ChemR23 knockdown. RvE1 inhibited Ccl5 expression in VSMCs via the AMPKα (AMP-activated protein kinase α)/Nrf2 (nuclear factor E2-related factor 2)/canonical NF-κB (nuclear factor κB) pathway, thereby reducing the infiltration of macrophages and T cells. The AMPKα/Nrf2 pathway also mediated the effects of RvE1 on VSMC phenotypic transformation and proliferation. In patients with hypertension, the serum levels of RvE1 and other eicosapentaenoic acid-derived metabolites were significantly decreased. CONCLUSIONS: RvE1/ChemR23 ameliorated hypertension and vascular remodeling by activating AMPKα/Nrf2 signaling, which mediated immune cell infiltration by inhibiting the canonical NF-κB/Ccl5 pathway, and regulated VSMC proliferation and phenotypic transformation. RvE1/ChemR23 may be a potential therapeutic target for hypertension.


Assuntos
Hipertensão , Hormônios Peptídicos , Animais , Humanos , Camundongos , Angiotensina II , Quimiocinas , Ácido Eicosapentaenoico/farmacologia , Hipertensão/induzido quimicamente , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Fator 2 Relacionado a NF-E2 , NF-kappa B , Remodelação Vascular
11.
Cell Mol Life Sci ; 80(11): 324, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824022

RESUMO

Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Camundongos , Modelos Animais de Doenças , Fibrose , Inflamação/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Janus Quinase 1/metabolismo , Fator de Transcrição STAT1/metabolismo
12.
Diagnostics (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627891

RESUMO

Vascular calcification is the abnormal deposition of calcium phosphate complexes in blood vessels, which is regarded as the pathological basis of multiple cardiovascular diseases. The flowing blood exerts a frictional force called shear stress on the vascular wall. Blood vessels have different hydrodynamic properties due to discrepancies in geometric and mechanical properties. The disturbance of the blood flow in the bending area and the branch point of the arterial tree produces a shear stress lower than the physiological magnitude of the laminar shear stress, which can induce the occurrence of vascular calcification. Endothelial cells sense the fluid dynamics of blood and transmit electrical and chemical signals to the full-thickness of blood vessels. Through crosstalk with endothelial cells, smooth muscle cells trigger osteogenic transformation, involved in mediating vascular intima and media calcification. In addition, based on the detection of fluid dynamics parameters, emerging imaging technologies such as 4D Flow MRI and computational fluid dynamics have greatly improved the early diagnosis ability of cardiovascular diseases, showing extremely high clinical application prospects.

13.
iScience ; 26(9): 107544, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636037

RESUMO

Cardiac dysfunction is a well-recognized complication of sepsis and seriously affects the prognosis of sepsis patients. IL-30 has been reported to exert anti-inflammatory effects in various diseases. However, the role of IL-30 in sepsis-induced myocardial dysfunction (SIMD) remains unclear. Here, we explored the protective role of IL-30 in cecum ligation and puncture (CLP)-induced SIMD mice. IL-30 expression increased in the cardiac tissues of septic mice and was mainly derived from macrophages. IL-30 deletion or neutralization aggravated sepsis-induced cardiac dysfunction and injury, whereas recombinant IL-30 treatment significantly ameliorated it. Mechanistically, IL-30 deficiency exerts pro-inflammatory effects by promoting Ly6Chigh macrophage polarization and pyroptosis. Inhibiting NLRP3 with MCC950 significantly reversed cardiac dysfunction, macrophage polarization and pyroptosis aggravated by IL-30 deficiency. Recombinant IL-30 inhibited pro-inflammatory macrophage polarization and pyroptosis in vivo and vitro. Taken together, these results suggest that IL-30 protects against SIMD by inhibiting pro-inflammatory macrophage polarization and pyroptosis.

14.
Biochem Pharmacol ; 214: 115671, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380112

RESUMO

BACKGROUND: Transient receptor potential ankyrin 1 (TRPA1) has been linked to the development of various cardiovascular diseases, but its role in diabetic cardiomyopathy is not well understood. This study aimed to investigate the protective effects of TRPA1 deficiency on diabetic cardiomyopathy in rats with streptozotocin-induced diabetes and in neonatal rat cardiac fibroblasts (CFs) exposed to high glucose (HG). METHODS: Cardiac TRPA1 expression levels were measured in diabetic rats. Cardiac function, remodeling, and fibrosis were analyzed in Sprague-Dawley (SD) rats and TRPA1-deficient rats with diabetic cardiomyopathy. In vitro, fibrosis was measured in CFs exposed to HG. Additionally, 1,8-cineole, a natural inhibitor of TRPA1, was used to treat SD rats with diabetic cardiomyopathy. RESULTS: TRPA1 expression was increased in the heart tissue of diabetic rats and in CFs treated with HG. TRPA1 deficiency significantly improved cardiac function in diabetic rats, as evidenced by improved echocardiography and reduced cardiac hypertrophy and fibrosis. In vitro, TRPA1 deficiency suppressed the transformation of HG-induced CFs into myofibroblasts. The cardioprotective effect of TRPA1 deficiency was found to inhibit cardiac fibrosis by regulating GRK5/NFAT signaling. Furthermore, inhibition of GRK5/NFAT signaling abolished the promotion of CF transformation into myofibroblasts by TRPA1 activation. Inhibition of TRPA1 activation by 1,8-cineole reduced cardiac dysfunction and remodeling in diabetic rats by regulating GRK5/NFAT signaling. CONCLUSIONS: TRPA1 deficiency reduced cardiac fibrosis in diabetic rats and inhibited HG-induced CF activation in vitro by regulating GRK5/NFAT signaling. The TRPA1 inhibitor 1,8-cineole may serve as a novel therapeutic agent for the treatment of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ratos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Ratos Sprague-Dawley , Eucaliptol/uso terapêutico , Fibrose
15.
J Am Heart Assoc ; 12(12): e029053, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37318008

RESUMO

Background Sympathetic hyperactivity contributes to pathological remodeling after myocardial infarction (MI). However, the mechanisms underlying the increase in sympathetic activity remain unknown. Microglia are the predominant immune cells in the central nervous system and can regulate sympathetic neuron activity through neuroimmune response in the hypothalamic paraventricular nucleus. The present study aimed to investigate whether microglia-mediated neuroimmune response can regulate sympathetic activity and cardiac remodeling after MI. Methods and Results PLX3397 (pexidartinib) was used to deplete central microglia via intragastric injection or intracerebroventricular injection. After that, MI was induced by ligation of the left anterior descending coronary artery. Our study showed that MI resulted in the activation of microglia in the paraventricular nucleus. Microglia depletion, which was induced by PLX3397 treatment via intragastric injection or intracerebroventricular injection, improved cardiac function, reduced infarction size, and attenuated cardiomyocyte apoptosis, fibrosis, pathological electrical remodeling, and myocardial inflammation after MI. Mechanistically, these protective effects were associated with an attenuated neuroimmune response in the paraventricular nucleus, which contributed to the decrease of sympathetic activity and attenuation of sympathetic remodeling in the heart. However, intragastric injection with PLX3397 obviously depleted macrophages and induced neutrophil and T-lymphocyte disorders in the heart, blood, and spleen. Conclusions Microglia depletion in the central nervous system attenuates pathological cardiac remodeling after MI by inhibiting neuroimmune response and sympathetic activity. Intragastric administration of PLX3397 leads to serious deleterious effects in peripheral immune cells, especially macrophages, which should be a cause for concern in animal experiments and clinical practice.


Assuntos
Microglia , Infarto do Miocárdio , Remodelação Ventricular , Animais , Coração , Microglia/imunologia , Infarto do Miocárdio/imunologia , Sistema Nervoso Simpático , Remodelação Ventricular/fisiologia , Imunidade
16.
J Mol Med (Berl) ; 101(6): 731-742, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149518

RESUMO

Previous studies have demonstrated that bone morphogenetic proteins (BMPs) play important roles in cardiovascular diseases, including atherosclerosis, artery calcification, myocardial remodeling, pulmonary arterial hypertension, and diabetic cardiomyopathy. Kielin/chordin-like protein (KCP) is a secreted protein that regulates the expression and function of BMPs. However, the role of KCP in cardiac aging remains unknown. In this study, we aimed to investigate the role of KCP in cardiac aging and its possible mechanisms. Echocardiogram showed that heart function was impaired in aged mice (24 months). In addition, analysis of heart structure showed that KCP knockout (KO) aggravated cardiac remodeling in aged mice. Moreover, KCP KO increased p-smad2/3 and TGF-ß expression, while decreased BMP-2 expression in aged mice. Furthermore, KCP KO increased the expression of cardiac senescence-related proteins in aged mice. KCP KO aggravated the imbalance of oxidants and antioxidants and increased the expression of proinflammatory cytokines and cardiomyocyte apoptosis in aged mice. Our study demonstrated that KCP KO aggravated cardiac aging in mice by increasing the levels of oxidative stress, inflammation, and cardiomyocyte apoptosis. KEY MESSAGE: KCP KO aggravated aging-related cardiac dysfunction and remodeling in male mice. KCP KO aggravated cardiac aging by increasing the levels of oxidative stress, inflammation, and cardiomyocyte apoptosis.


Assuntos
Proteínas de Transporte , Deficiência de Proteína , Camundongos , Masculino , Animais , Proteínas de Transporte/química , Envelhecimento/genética , Envelhecimento/metabolismo , Inflamação , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL
17.
Biochem Pharmacol ; 210: 115469, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868324

RESUMO

BACKGROUND: Several interleukins (ILs) have been demonstrated to participate in cardiac injury. This study aimed to investigate whether IL-27p28 plays a regulatory role in doxorubicin (DOX)-induced cardiac injury by regulating inflammation and oxidative stress. METHODS: Dox was used to establish a mouse cardiac injury model, and IL-27p28 was knocked out to observe its role in cardiac injury. In addition, monocytes were adoptively transferred to clarify whether monocyte-macrophages mediate the regulatory role of IL-27p28 in DOX-induced cardiac injury. RESULTS: IL-27p28 knockout significantly aggravated DOX-induced cardiac injury and cardiac dysfunction. IL-27p28 knockout also upregulated the phosphorylation levels of p65 and STAT1 and promoted M1 macrophage polarization in DOX-treated mice, which increased cardiac inflammation and oxidative stress. Moreover, IL-27p28-knockout mice that were adoptively transferred WT monocytes exhibited worse cardiac injury and cardiac dysfunction and higher cardiac inflammation and oxidative stress. CONCLUSIONS: IL-27p28 knockdown aggravates DOX-induced cardiac injury by worsening the M1 macrophage/M2 macrophage imbalance and its associated inflammatory response and oxidative stress.


Assuntos
Cardiotoxicidade , Cardiopatias , Interleucinas , Animais , Camundongos , Apoptose , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Doxorrubicina/metabolismo , Cardiopatias/metabolismo , Inflamação/metabolismo , Macrófagos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Interleucinas/genética , Interleucinas/metabolismo
18.
Infect Drug Resist ; 16: 423-434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36718461

RESUMO

Background: Although tigecycline is an effective drug against drug-resistant bacteria, it demonstrated a higher all-cause mortality than comparator antibiotics and a high incidence of coagulation disorders which can be accompanied by severe bleeding. At present, a predictive model for tigecycline-related coagulopathy is not readily available, and the prognostic value of coagulopathy in tigecycline-administered patients has not been elucidated. In this paper, we investigate the association between tigecycline-related coagulopathy and in-hospital mortality to develop a nomogram for the prediction of tigecycline-related coagulopathy. Methods: This retrospective cohort study includes 311 adults prescribed with tigecycline from 2018 to 2020. The primary cohort and validation cohort were constructed by dividing the participants in a ratio of 7:3. The endpoint is tigecycline-related coagulopathy, defined as a condition with no abnormality in coagulation prior to tigecycline application but developed the following symptoms upon prescription: activated partial thromboplastin time (APTT) extended by >10 s than the upper limit of normal (ULN), prothrombin time (PT) prolonged for >3 s than the ULN or reduced serum level of fibrinogen to <2.0 g/L. A predictive nomogram based on logistic regression was subsequently constructed. Results: Tigecycline intake for over 7 days, combined other antibiotics, initial PT, initial fibrinogen and estimated glomerular filtration rate (eGFR), are independent prognostic factors of tigecycline-related coagulopathy. The primary and validation cohort each has an area under the receiver operating characteristic curve (AUC) of 0.792 (0.732-0.851) and 0.730 (0.629-0.832) for nomogram, respectively. Furthermore, the fitted calibration curve illustrated adequate fit of the model, while the decision curve analysis demonstrated good clinical value. Survival curves showed a high mortality rate among patients with tigecycline-related coagulopathy. Conclusion: This nomogram exhibited helpful clinical value in predicting tigecycline-related coagulopathy that could reduce the high mortality rate of patients prescribed with tigecycline.

19.
Front Cardiovasc Med ; 10: 1302992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162138

RESUMO

Background: The characteristics of aortic annulus changes in aortic regurgitation (AR) patients are poorly understood, and predictive factors among aortic valve disease are yet to be established. Objective: This study seeks to elucidate the pattern of annular size fluctuations across different cardiac phases in AR patients and to identify predictors for annular enlargement during either systole or diastole in aortic valve diseases. Methods: A retrospective analysis was conducted on 55 patients with severe aortic valve diseases, including 26 patients with aortic stenosis (AS) and 29 with AR, to discern the two groups' contrasting and analogous patterns of annular changes. The patient sample was expanded to 107 to investigate the factors influencing the size of the annulus during different cardiac phases. Based on our findings, patients were then divided into two groups: those with an annulus that is larger during systole (83 patients) and those where the annulus is larger during diastole (24 patients). Results: Typically, AR patients exhibit a dynamic annulus, with both perimeter and area being largest during mid-systole. These dimensions diminish progressively and then increase again in early diastole, a pattern consistent with observations in AS patients. Among 107 patients, 21% had diastolic enlargement. Systolic measurements would lead to prosthesis undersizing in 17% of these. Male gender and lower systolic annulus minimum relative to body surface area (AnMin index) were predictors of diastolic enlargement, with ROC curve areas of 0.70 and 0.87 for AR and AS, respectively. Conclusions: Systolic measurements are recommended for AR patients. Gender and the AnMin index are significant predictors, particularly potent in AS patients.

20.
FASEB J ; 36(10): e22509, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063107

RESUMO

Semaphorins (Semas), which belongs to the axonal guidance molecules, include 8 classes and could affect axon growth in the nervous system. Recently, semaphorins were found to regulate other pathophysiological processes, such as immune response, oncogenesis, tumor angiogenesis, and bone homeostasis, through binding with their plexin and neuropilin receptors. In this review, we summarized the detailed role of semaphorins and their receptors in the pathological progression of various cardiovascular diseases (CVDs), highlighting that semaphorins may be potential therapeutic targets and novel biomarkers for CVDs.


Assuntos
Doenças Cardiovasculares , Semaforinas , Biomarcadores , Transformação Celular Neoplásica , Humanos , Neovascularização Patológica/patologia , Semaforinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...